
1

Beyond Inverted Pendulums: Task-optimal Simple
Models of Legged Locomotion

Yu-Ming Chen1, Jianshu Hu2 and Michael Posa1

Abstract—Reduced-order models (ROM) are popular in online
motion planning due to their simplicity. A good ROM for
control captures critical task-relevant aspects of the full dynamics
while remaining low dimensional. However, planning within
the reduced-order space unavoidably constrains the full model,
and hence we sacrifice the full potential of the robot. In the
community of legged locomotion, this has lead to a search for
better model extensions, but many of these extensions require
human intuition, and there has not existed a principled way of
evaluating the model performance and discovering new models.
In this work, we propose a model optimization algorithm that
automatically synthesizes reduced-order models, optimal with
respect to a user-specified distribution of tasks and corresponding
cost functions. To demonstrate our work, we optimized models for
a bipedal robot Cassie. We show in simulation that the optimal
ROM reduces the cost of Cassie’s joint torques by up to 23%
and increases its walking speed by up to 54%. We also show
hardware result that the real robot walks on flat ground with
10% lower torque cost. All videos and code can be found at
https://sites.google.com/view/ymchen/research/optimal-rom.

Index Terms—Reduced-order models, model optimization, hu-
manoid and bipedal locomotion, optimization and optimal con-
trol, real time planning and control

I. INTRODUCTION

State-of-the-art approaches to model-based planning and
control of legged locomotion can be categorized into two types
[1]. One uses the full-order model of a robot, and the other uses
a reduced-order model (ROM). With the full model, we can
leverage our full knowledge about the robot to achieve high
performance [2]–[4]. However, this comes with the cost of
heavy computation load, and it also poses a challenge in formal
analysis, because modern legged robots have many degrees of
freedom. To manage this complexity, the community of legged
robots has embraced the use of reduced-order models.

Most reduced-order models adopt constraints (assumptions)
on the full model dynamics while capturing the task-relevant
part of the full-order dynamics. For example, the linear
inverted pendulum (LIP) model [5], [6] assumes that the
robot is a point mass that stays in a plane, which greatly
reduces energy efficiency and limits the speed and stride length
of the robot. The spring loaded inverted pendulum (SLIP)
model [7] is a point mass model with spring-mass dynamics,
which implies zero centroidal angular momentum rate and zero
ground impacts at foot touchdown event. Therefore, when we
plan for motions only in the reduced-space, we unavoidably

1The authors are with the General Robotics, Automation, Sensing and
Perception (GRASP) Laboratory, University of Pennsylvania, Philadelphia,
PA 19104, USA. {yminchen, posa}@seas.upenn.edu

2The author is with the UM-SJTU Joint Institute, Shanghai Jiao Tong
University, Shanghai, China. hjs1998@sjtu.edu.cn

impose limitations on the full dynamics. This restricts a
complex robot’s motion to that of the low-dimensional model
and necessarily sacrifices performance of the robot.

The above limitations of the reduced-order models have
long been acknowledged by the community, resulting in a
wide array of extensions that universally rely on human
intuition, and are often in the form of mechanical components
(a spring, a damper, a rigid body, the second leg, etc) [8]–
[15]. The success of such model extensions which enable
high-performance real time planning on hardware are listed as
follows. Chignoli et al. [16] used a single rigid body model and
assumed small body pitch and roll angle, in order to formulate
a convex planning problem. Xiong et al. [8] extended LIP
with a double-support phase while maintaining the zero ground
impact assumption, so the model is still linear and conducive
to a LQR controller [17]–[19]. Gibson et al. [20], [21] used
the angular-momentum-based LIP which has better prediction
accuracy than the traditional LIP. Dai et al. and Herzog et al.
[22], [23] combined the centroidal momentum model with full
robot configurations, and its real time application in planning
was made possible thanks to Boston Dynamics’ software
engineering [24].

While some of the above extensions have improved the
robot performance, it remains unclear which extension pro-
vides more performance improvement than the others, and we
do not have a metric to improve the model performance with.
Additionally, it has been shown that not all model extensions
can significantly improve the performance of robots. For exam-
ple, allowing the center of mass height to vary provides limited
aid in the task of balancing [25], [26]. In our work, we aim
to automatically discover the most beneficial extension of the
reduced-order models by directly optimizing the models given
a user-specified objective function and a task distribution.

A. Related Work
Several researchers have sought to enhance the performance

of the reduced-order model by mixing it with a full model in
the planning horizon of Model Predictive Control (MPC). Li
et al. [27] divided the horizon into two segments, utilizing
a full model for the immediate part and a reduced-order
model for the distant part. Subsequently, Khazoom et al. [28]
systematically determined the optimal scheduling of these two
models. Norby et al. [29] blended the full and reduced-
order models while adaptively switching between the two.
Our work is different from these existing works in that we
directly optimize a reduced-order model instead of reasoning
about scheduling two models to improve the overall model
performance.

https://sites.google.com/view/ymchen/research/optimal-rom

2

Fig. 1. An outline of the synthesis and deployment of optimal reduced-order models (ROM). Offline, given a full-order model and a distribution of tasks, we
optimize a new model that is effective over the task space (Section III). Online, we generate new plans for the reduced-order model and track these trajectories
on the true, full-order system (Section IV). This diagram also shows the bipedal robot Cassie (in the rightmost box) and its full model. Cassie has five motors
on each leg – three located at the hip, one at the knee and one at the toe. Additionally, there are 2 leaf springs in each leg, and the spring joints are visualized
by q16 to q19 in the figure. The springs are a part of the closed-loop linkages of the legs. We model these linkages with distance constraints, so there are no
rods visualized in the model.

Classical approaches to finding a ROM often minimize
the error between the ROM and the full model. Pandala et
al. [30] attempted to close this gap implicitly in a learning
framework, modeling the difference between the two models
as a disturbance to the reduced dynamics. Our prior work [31]
looked for an Integrable Whole-body Orientation model by
minimizing the angular momentum error between the reduced-
order and full-order model. Yamane [32] linearized the full
model and reduced the dimension via principal component
analysis (PCA), resulting in a ROM optimally approximating
the full dynamics in a neighborhood of the linearization point.
In contrast to these works, the approach presented in this paper
leverages the fact that control on the full robot can be used
to exactly embed low-dimensional models, and thus we judge
the quality of such a model by a user-specified cost function
instead of the modeling error. This definition and mechanism
for assessing a ROM align with the state-of-the-art methods
in model-based planning and control of legged robots – plan
trajectories/inputs in the ROM space first and then track these
reduced-order trajectories/inputs on the robot.

B. Contributions

The contributions of this paper are:

1) We propose a bilevel optimization algorithm to automati-
cally synthesize new reduced-order models, embedding
high-performance capabilities within low-dimensional
representations. (This contribution was presented in the
conference form [33] of this paper.)

2) We improve the model formulation of the prior work
[33], and improve the algorithm efficiency by using the
Envelope Theorem to derive the analytical gradient of
an optimization problem. We provide more examples of

model optimization, with different sizes of task space and
basis functions.

3) We design a real time MPC controller for the optimal
ROM, and demonstrate that the optimal model is capable
of achieving higher performance in both simulation and
hardware experiment of a bipedal robot Cassie.

4) We evaluate and compare the performances of reduced-
order models in both simulation and hardware experi-
ments. We analyze the performance gain and discuss the
lessons learned in translating the model performance of
an open-loop system to a closed-loop system.

C. Organization

The paper is organized as follows. Section II introduces
the models of the Cassie robot and the background for this
paper. Section III introduces our definition of a reduced-
order model, formulates the model optimization problem,
provides an algorithm that solves the problem, and finally
demonstrates model optimization with a few examples. Section
IV introduces an MPC for a specific class of ROMs used in
Section V. Section V compares and analyzes the performance
improvement in trajectory optimization, in simulation and in
hardware. Section VI discusses the hybrid nature of legged
robot dynamics and introduces the MPC for a general ROM.
Finally, we discuss some of the lessons learned during the
journey of realizing better performance on the robot in Section
VII, and conclude the paper in Section VIII. The link to all
videos and code for the examples is provided in the Abstract.

II. BACKGROUND

A. Reduced-order Models of Legged Locomotion

Modern legged robots like the Agility Robotics Cassie
have many degrees of freedom and may incorporate passive

3

dynamic elements such as springs and dampers. To manage
this complexity and simplify the design of planning and
control, reduced-order models have been widely adopted in
the research community.

One observation, common to many approaches, lies in the
relationship between foot placement, ground reaction forces,
and the center of mass (CoM) [34]. While focusing on the
CoM neglects the individual robot limbs, controlling the CoM
position has proven to be an excellent proxy for the stability
of a walking robot. CoM-based simple models include the LIP
[5], [6], SLIP [7], hopping models [35], inverted pendulums
[36], [37], and others. Since these models are universally low-
dimensional, they have enabled a variety of control synthesis
and analysis techniques that would not otherwise be computa-
tionally tractable. For example, numerical methods have been
successful at finding robust gaits and control designs [38]–
[41], and assessing stability [42].

Many of the aforementioned reduced-order models feature
massless legs, eliminating any foot-ground impact during the
swing foot touchdown event. When dealing with a robot or
a model incorporating a foot of non-negligible mass, zero
impacts necessitate zero swing foot velocity at touchdown.
This constraint ensures the velocity continuity before and after
the touchdown event.

A popular approach to using reduced-order models on
legged robots is to first plan with the ROM to get desired
ROM trajectories and desired foot steps, and then use a low-
level controller to track the planned trajectories. This workflow
is depicted in the right half of Fig. 1. As planning speed
improves (e.g., through model complexity reduction), real time
solving of the planning problem with a receding horizon
(MPC) becomes feasible.

B. Models of Cassie
The bipedal robot Cassie (Fig. 1) is the platform we used

to test our model optimization algorithm. Here we briefly
introduce its model. Let the state of Cassie be x = [q, v] ∈ R45

where q ∈ R23 and v ∈ R22 are generalized position and
velocity, respectively. We note that q and v have different
dimensions, because the floating base orientation is expressed
via quaternion. The conversion between q̇ and v depends only
on q [43].

The standard equations of motion are

M(q)v̇ = fcg(q, v) +Bu+ Jh(q)Tλ+ τapp(q, v) (1)

where M is the mass matrix which includes the reflected
inertia of motors, fcg contains the velocity product terms and
the gravitational term, B is the actuation selection matrix, u is
the actuator input, Jh is the Jacobian of holonomic constraints
associated with the constraint forces λ, and τapp includes
the other generalized forces applied on the system such as
joint damping forces. The forces λ contain ground contact
forces and constraint forces internal to the four-bar linkages
of Cassie. In simulation, the ground forces are calculated
by solving an optimization problem based on the simulator’s
contact model [44]. In trajectory optimization, the forces λ are
solved simultaneously with x and u while satisfying the dy-
namics, holonomic and friction cone constraints. Furthermore,

we assume the swing foot collision with the ground during
walking is perfectly inelastic in the trajectory optimization, so
the robot dynamics is hybrid. Combining the discrete impact
dynamics (from foot collision) with Eq. (1), we derive the
hybrid equations of motion{

ẋ = f (x, u, λ) , x− 6∈ S
x+ = ∆(x−,Λ), x− ∈ S

(2)

where x− and x+ are pre- and post-impact state, Λ is the
impulse of swing foot collision, f is the continuous-time
dynamics, ∆ is the discrete mapping at the touchdown event,
and S is the surface in the state space where the event must
occur [45], [46].

Cassie’s legs contain four four-bar linkages – two around
the shin links and the other two around the tarsus links.
We simplify the model by lumping the mass of the rods of
the tarsus four-bar linkages into the toe bodies, while the
shin linkages are modeled with fixed-distance constraints. To
simplify the model further, we assume Cassie’s springs are
infinitely stiff (or equivalently no springs), in which case
q ∈ R19 and v ∈ R18. This assumption has been successfully
deployed by other researchers [47], and it is necessary for
the coarse integration steps in the trajectory optimization3 in
Section II-C. We also use this assumption in Section V when
comparing the ROM performances between the trajectory
optimization and simulation.

C. Trajectory Optimization

This paper will heavily leverage trajectory optimization
within the inner loop of a bilevel optimization problem. We
briefly review it here, but the reader is encouraged to see
[49] for a more complete description. Generally speaking,
trajectory optimization is a process of finding state x(t) and
input u(t) that minimize some measure of cost h while
satisfying a set of constraints C. Following the approach taken
in prior work [50], [51], we explicitly optimize over state,
input, and constraint (contact) forces λ(t),

min
x(t),u(t),λ(t)

∫ tf

t0

h(x(t), u(t))dt

s.t. ẋ(t) = f(x(t), u(t), λ(t)),
C(x(t), u(t), λ(t)) ≤ 0,

(3)

where f is the dynamics of the system, λ are the forces
required to satisfy holonomic constraints (inside C ≤ 0),
and t0 and tf are the initial and the final time respectively.
Standard approaches discretize in time, formulating (3) as a
finite-dimensional nonlinear programming problem. For the
purposes of this paper, any such method would be appropriate,
while we use DIRCON [51] to address the closed kinematic
chains of the Cassie robot. DIRCON transcribes the infinite

3Reher et al. [48] showed 7 times increase in solve time when using the full
Cassie model (with spring dynamics) in trajectory optimization. Additionally,
Cassie’s spring properties can change over time and are hard to identify
accurately, which discourages researchers from using the dynamic model of
the springs on Cassie.

4

dimensional problem in Eq. (3) into a finite dimensional
nonlinear problem

min
w

n−1∑
i=1

1

2

(
h(xi, ui) + h(xi+1, ui+1)

)
δi

s.t. fc(xi, xi+1, ui, ui+1, λi, λi+1, δi, αi) = 0,
i = 1, ..., n− 1

C(xi, ui, λi) ≤ 0, i = 1, ..., n

(4)

where n is the number of knot points, fc is the collocation
constraint for dynamics, C ≤ 0 contains all the other con-
straints such as the four-bar-linkage kinematic constraints, δi
is a constant time interval between knot point i and i+1, and
the decision variables are

w = [x1, ..., xn,u1, ..., un, λ1, ..., λn, α1, ..., αn−1] ∈ Rnw ,

where α1, ..., αn−1 are slack variables specific to DIRCON.
Eq. (4) uses the trapezoidal rule to approximate the integration
of the running cost in Eq. (3), simplifying the selection of
decision variables at knot points for evaluating the function h.

A large-scale nonlinear optimization problem such as (4)
can be difficult to solve. To improve the convergence of the
optimization, we manually scale the decision variables, con-
straints and the cost function, and we also add regularization
terms (see Appendix A for details).

D. Bilevel Optimization

Since our formulation can be broadly categorized as bilevel
optimization [52], we here briefly review its basics. The basic
structure of our bilevel optimization problem is written as

min
θ

[∑
i

min
w

Ψi(w, θ)

]
(5)

The goal is to minimize the outer-level objective function∑
i Ψi(w

∗
i (θ), θ) with respect to θ, where w∗i (θ) is obtained by

minimizing the inner-level objective Ψi(w, θ) parameterized
by θ. Bilevel optimization has recently been used in various
applications such as meta-learning [53], reinforcement learn-
ing [54], robotics [55], [56], etc.

Solving a bilevel program is generally NP-hard [57]. There
are two types of methods to approach bilevel optimization. The
first type is constraint-based [58], [59], where the key idea is
to replace the inner level optimization with its optimality con-
dition (such as the KKT conditions [60]), and finally solve a
“single-level” constrained optimization. However, those meth-
ods are difficult to apply to the problem of this paper, because
our inner-level is a trajectory optimization, and replacing it
with its optimality condition will additionally introduce a large
number of dual variables and co-states, dramatically increasing
the size of the single-level optimization. The second type is
gradient-based [61], [62]. The idea is to maintain and solve
the inner-level optimization, and then update the outer-level
decision variable by differentiating through the inner-level
solution using graph-unrolling approximation [62], [63] or
implicit function theorem [64]. Compared to constraint-based
methods, gradient-based methods maintain the bilevel structure
and make bilevel optimization more tractable and efficient to
solve.

In this paper, we use the Envelope Theorem [65], [66]
and exploit the fact that our problem uses the same objective
functions in the outer level and the inner level. This structure
enables us to develop a more efficient gradient-based method
(the second type) to solve our problem. Specifically, the
gradient of the outer-level objective does not require differen-
tiating the solution of the inner-level optimization with respect
to the parameters. This leads to two numerical advantages
of our method over existing gradient-based methods. First,
our method bypasses the computationally intensive implicit
theorem, which requires the inverse of Hessian of the inner-
level optimization. Second, our method leverages the inner-
loop solver’s understanding of active and inactive constraints,
avoiding implementing the algorithm ourselves and avoiding
tuning parameters such as the active set tolerance.

III. MODEL OPTIMIZATION

In this section, we propose a definition of reduced-order
models, along with a notion of quality (or cost) for such
models. We then introduce a bilevel optimization algorithm
to optimize within our class of models.

A. Definition of Reduced-order Models

Let q and u be the generalized position and input of the full-
order model, and let y and τ be the generalized position and
input of the reduced-order model. We define a reduced-order
model µ of dimension ny by two functions – an embedding
function r : q 7→ y and the second-order dynamics of the
reduced-order model g(y, ẏ, τ). That is,

µ , (r, g), (6)

with

y = r(q), (7a)
ÿ = g(y, ẏ, τ), (7b)

where dim y < dim q and dim τ ≤ dimu. As an example, to
represent SLIP, r is the center of mass position relative to the
foot, g is the spring-mass dynamics, and dim τ = 0 as SLIP is
passive. Additionally, we note that the choices of r and g are
independent of each other. For example, LIP and SLIP share
the same r, but they have different dynamics function g (one
has zero vertical acceleration and the other is the spring-mass
dynamics).

The embedding function r can explicitly include the left
or right leg of the robot (e.g. choosing left leg as support
leg instead of right leg), in which case there will be two
reduced-order models. In this paper, we assume to parameter-
ize over left-right symmetric reduced-order models. As such,
we explicitly optimize over a model corresponding to left-
support, which will then be mirrored to cover both left and
right-support phases. The details of this mirroring operation
can be found in Appendix B.

Fig. 2 shows the relationship between the full-order and the
reduced-order models. If we integrate the two models forward
in time with their own dynamics, the resultant trajectories will
still satisfy the embedding function r at any time in the future.

5

Fig. 2. Relationship of the full-order and reduced-order models. The general-
ized positions q and y satisfy the embedding function r for all time, and the
evolution of the velocities q̇ and ẏ respects the dynamics f and g, respectively.

B. Problem Statement

As shown in the left half of Fig. 1, the goal is to find an
optimal model µ∗, given a distribution Γ over a set of tasks.
The distribution could be provided a priori or estimated via
the output of a higher-level motion planner. The tasks might
include anything physically achievable by the robot, such as
walking up a ramp at different speeds, turning at various rates,
jumping, running with a specified amount of energy, etc. The
goal, then, is to find a reduced-order model that enables low-
cost motion over the space of tasks,

µ∗ = argmin
µ∈M

Eγ [Jγ(µ)] , (8)

where M is the model space, Eγ takes the expected value
over Γ, and Jγ(µ) is the cost required to achieve the tasks
γ ∼ Γ while the robot is restricted to a particular model µ.

With our model definition in Eq. (6), the problem in Eq.
(8) is infinite dimensional over the space of embedding and
dynamics functions, r and g. To simplify, we parametrize r
and g with basis functions {φe,i | i = 1, . . . , ne} and {φd,i |
i = 1, . . . , nd} with linear weights θe ∈ Rny·ne and θd ∈
Rny·nd . Further assuming that the dynamics are affine in τ
with constant multiplier, r and g are given as

y = r(q; θe) = Θeφe(q), (9a)
ÿ = g(y, ẏ, τ ; θd) = Θdφd(y, ẏ) +Byτ, (9b)

where Θe ∈ Rny×ne and Θd ∈ Rny×nd are θe and θd arranged
as matrices, φe = [φe,1, . . . , φe,ne], φd = [φd,1, . . . , φd,nd],
and By ∈ Rny×nτ . For simplicity, we choose a constant
value for By . Observing that physics-based rigid-body models
lead to state-dependent values for By , one can also extend
this method by parameterizing By(y, ẏ). Moreover, while we
choose linear parameterization here, any differentiable func-
tion approximator (e.g. a neural network) can be equivalently
used.

Let the model parameters be θ = [θe, θd] ∈ Rnt . Eq. (8)
can be rewritten as

θ∗ = argmin
θ

Eγ [Jγ(θ)] . (O)

From now on, we work explicitly in θ, rather than µ. As
we will see in the next section, Jγ(θ) is an optimal cost of
a trajectory optimization problem, making Eq. (O) a bilevel

optimization problem. Additionally, given the parameterization
in Eq. (9), the ROM dimension ny is fixed during the model
optimization.

C. Task Evaluation

We use trajectory optimization to evaluate the task cost
Jγ(θ). Under this setting, the tasks γ are defined by a cost
function hγ and task-specific constraints Cγ . Jγ(θ) is the opti-
mal cost to achieve the tasks while simultaneously respecting
the embedding and dynamics given by θ. We note that the
cost function hγ is a function of the full model, although we
occasionally refer to the cost evaluated by this function as the
ROM performance because the ROM is embedded in the full
model.

The resulting optimization problem is similar to (4), but
contains additional constraints and decision variables for the
reduced-order model embedding,

Jγ(θ) , min
w

n−1∑
i=1

1

2

(
hγ(xi, ui) + hγ(xi+1, ui+1)

)
δi

s.t. fc(xi, xi+1, ui, ui+1, λi, λi+1, δi, αi) = 0,
i = 1, . . . , n− 1

gc (xi, ui, λi, τi; θ) = 0, i = 1, . . . , n
Cγ(xi, ui, λi) ≤ 0, i = 1, . . . , n

(10)
where fc and gc are dynamics constraints for the full-order
and reduced-order dynamics, respectively. The decision vari-
ables are w = [x1, ..., xn, u1, ..., un, λ1, ..., λn, τ1, ..., τn,
α1, ..., αn−1], noting the addition of τi.

The formulation of dynamics and holonomic constraints of
the full-order model are described in [51], while the reduced-
order constraint gc is

gc = ÿi − g(yi, ẏi, τi; θd) = 0

⇒ gc = Jiv̇i + J̇ivi − g(yi, ẏi, τi; θd) = 0
(11)

where

yi = r(qi; θe), ẏi =
∂r(qi; θe)

∂qi
q̇i, Ji =

∂r(qi; θe)

∂qi
, and

v̇i = M(qi)
−1 (fcg(qi, vi) +Bui + Jh(qi)

Tλi + τapp(qi, vi)
)
.

The constraint gc = 0 not only explicitly describes the dynam-
ics of the reduced-order model but also implicitly imposes the
embedding constraint r via the variables y and ẏ. Therefore,
the problem (10) is equivalent to simultaneous optimization
of full-order and reduced-order trajectories that must also be
consistent with the embedding r.

For readability, we rewrite Eq. (10) as

Jγ(θ) = min
w

h̃γ(w)

s.t. f̃γ(w, θ) ≤ 0,
(TO)

where h̃γ is the cost function of Eq. (10) and f̃γ ≤ 0
encapsulates all the constraints in Eq. (10). In Section V, we
will use h̃γ to evaluate both the open-loop and closed-loop
performance.

Remark 1. Model optimization can change the physical
meaning of a ROM. Regardless, if JiM−1B (which maps a

6

full model input u to a reduced-order acceleration ÿi) has
full row rank, the ROM can be exactly-embedded into the full
model.

D. Bilevel Optimization Algorithm

Since there might be a large or infinite number of tasks γ ∼
Γ in Eq. (O), solving for the exact solution is often intractable.
Therefore, we use stochastic gradient descent to solve Eq. (O)
(specifically in the outer optimization, as opposed to the inner
trajectory optimization). That is, we sample a set of tasks from
the distribution Γ and optimize the averaged sample cost over
the model parameters θ.

The full approach to (O) is outlined in Algorithm 1. Starting
from an initial parameter seed θ0, N tasks are sampled, and
the cost for each task Jγj (θ) is evaluated by solving the
corresponding trajectory optimization problem (TO).

To compute the gradient ∇θ
[
Jγj (θ)

]
, we previously [33]

adopted an approach based in sequential quadratic program-
ming. It introduced extra parameters (e.g. tolerance for deter-
mining active constraints) and required solving a potentially
large and ill-conditioned system of linear equations which can
take minutes to solve to good accuracy. Here, we take a new
approach where we apply the Envelope Theorem and directly
derive the analytical gradient ∇θ

[
Jγj (θ)

]
shown in Corollary

1 (also see Section II-D).

Proposition 1 (Differentiability Condition [67]). Assume h̃
and f̃ are continuously differentiable functions, and consider
an optimization problem

J̃ (θ) = min
w

h̃(w, θ)

s.t. f̃(w, θ) ≤ 0,
(12)

where J̃ (θ) is the optimal cost of the problem. Let w∗(θ)
be the optimal solution to Eq. (12). w∗ is differentiable with
respect to θ if the following conditions hold:

1) the second-order optimality condition for Eq. (12),
2) linear independence constraint qualification (LICQ), and
3) strict complementarity at w∗.

Theorem 1 (Envelope Theorem [68]). Assume the problem in
Eq. (12) satisfies the differentiability condition. The gradient
of the optimal cost J̃ (θ) with respect to θ is

∇θ
[
J̃ (θ)

]
=
∂h̃(w∗, θ)

∂θ
+ λ∗T

∂f̃(w∗, θ)

∂θ
, (13)

where λ∗ is the dual solution to Eq. (12).

Corollary 1. The gradient of the optimal cost of (TO) is

∇θ [Jγ(θ)] = λ∗T
∂f̃γ(w∗, θ)

∂θ
, (14)

where w∗ and λ∗ are respectively the primal and the dual
solution to (TO).

Proof. The proof follows directly from Theorem 1. Note that
the cost function in (TO) is independent of θ, in which case
the first term of Eq. (13) becomes 0.

We note that there is, in general, no guarantee on global con-
vergence when using Eq. (13) in a gradient descent algorithm,

Algorithm 1 Reduced-order model optimization
Input: Task distribution Γ and step size α
Output: θ∗

Model initialization
1: θ ← θ0

Model optimization
2: repeat
3: Sample N tasks from Γ ⇒ γj , j = 1, ..., N
4: for j = 1, . . . , N do
5: Solve (TO) to get Jγj (θ)
6: Compute ∇θ

[
Jγj (θ)

]
by Eq. (14)

7: end for
8: Average the gradients ∆θ =

∑N
j=1∇θ[Jγj (θ)]

N
9: Gradient descent θ ← θ − α ·∆θ

10: until convergence
11: return θ

except for simple cases where h̃ and f̃ are convex functions
in (w, θ) [69]. As for local convergence towards a stationary
point, the gradient descent with Eq. (13) is guaranteed to
converge with a sufficiently small step size.

While there is no guarantee that the differentiability condi-
tion in Proposition 1 holds everywhere (in fact we expect it
to fail under certain conditions), in practice we have observed
that Algorithm 1 reliably converges. Additionally, the accuracy
of the gradient ∇θ [Jγ(θ)] is bounded by the accuracy of
the primal and dual solutions to (TO) [67]. In practice, we
observed that the gradient was accurate enough (showing local
convergence behavior) with the default optimality tolerance
and constraint tolerance given by solvers like SNOPT [70].

In Algorithm 1, the sampled tasks can sometimes be in-
feasible for the trajectory optimization problem due to a poor
choice in ROM or numerical difficulties when solving (TO).
In these cases, we do not include these samples in the gradient
update step. This is a reasonable approach as we expect that
optimizing the ROM for nearby tasks simultaneously improves
performance for the failed task by continuity. This does have
the potential to break the optimization process if large regions
of the task space were infeasible, but in practice we have
found this sample-rejection procedure robust enough to the
occasional numerical difficulties.

The model optimization in Algorithm 1 is deemed to have
converged if the norm of the average gradient of the sampled
costs falls below a specified threshold. This threshold can be
set on a case by case basis, depending on the robot models,
tasks, etc. In our experiments, we simply look at the cost-
iteration plots (e.g. Fig 4) and terminate the optimization when
the cost has stopped decreasing visibly.

E. Examples of Model Optimization

In the trajectory optimization problem in Eq. (TO), we
assume the robot walks with instantaneous change of support.
That is, the robot transitions from right support to left support
instantaneously, and vice versa. We consider only half-gait
periodic motion, and so include right-left leg alternation in
the impact map ∆.

7

Example # 1 2 3 4 5
Stride length (m) [-0.4, 0.4] [0.3, 0.4] [0.0, 0.42]
Pelvis height (m) [0.87, 1.03] 0.8

Ground incline (rad) 0 [-0.35, 0.35]
Turning rate (rad/s) 0 [-0.72, 0.72]
Stride duration (s) 0.35 0.35

Parameterize (r, g)? both (r, g) only g
Monomial order nφ 2 4 2 2 4
Dominant cost in Jγ u u v̇ v̇ u

Cost reduction 22.8% 20.7% 27.6% 38.2% 22.4%
TABLE I

EXAMPLES OF MODEL OPTIMIZATION. THIS TABLE INCLUDES THE TASK SPACE USED TO TRAIN MODELS (UNIFORM TASK DISTRIBUTION), THE HIGHEST
ORDER OF THE MONOMIALS OF BASIS FUNCTIONS, THE DOMINANT TERM OF THE COST FUNCTION Jγ , AND THE COST REDUCTION PERCENTAGE

(RELATIVE TO THE COST OF THE INITIAL MODEL).

Fig. 3. The linear inverted pendulum (LIP) model. It is a point mass model
of which height is restricted in a plane. The point mass and the origin of
this model correspond to the center of mass and the stance foot of the robot,
respectively. In the examples of this paper, we initialize the reduced-order
model to the LIP model during model optimization.

We solve the problems (TO) in parallel in each iteration
of Algorithm 1 using the SNOPT toolbox [70]. All examples
were generated using the Drake software toolbox [44] and
source code is available in the link provided in the Abstract.

1) Initialization and parameterization of ROM: To demon-
strate Algorithm 1, we optimize for 3D reduced-order models
on Cassie. The models are initialized with a three-dimensional
LIP, of which the generalized position y is shown in Fig. 3.
For reference, the equations of motion of the 3D LIP model
are

ÿ =

 ÿ1
ÿ2
ÿ3

 =

 cg · y1/y3
cg · y2/y3

0

 , (15)

where cg is the gravitational acceleration constant. This model
represents a point-mass body, where the body has a constant
speed in the vertical direction.

We choose basis functions such that they not only explicitly
include the position of the LIP, but also include a diverse
set of additional terms. That is, the basis set φe includes the
CoM position relative to the stance foot, and monomials of
{1, q7, ..., q19} up to nφ-th order. Similarly, the feature set φd
includes the terms in LIP dynamics (i.e. cgy1/y3 and cgy2/y3)
and monomials of {1, y1, y2, y3, ẏ1, ẏ2, ẏ3} up to nφ-th order.
With these basis functions, the ROM parameters θ can be
trivially initialized to match the LIP model’s.

2) Optimization Examples and Result: We demonstrate a
few examples of model optimization and compare their results.
The examples are shown in Table I along with their detailed
settings. We note that it is a common practice to fix the

Fig. 4. The averaged cost of the sampled tasks of each model optimization
iteration in Examples 1 to 5. Costs are normalized by the cost associated
with the full-order model (i.e. the cost of full model trajectory optimization
without any reduced-order model embedding). Therefore, the costs cannot go
below 1. The costs at iteration 1 represent the averaged costs for the robots
with the embedded initial reduced-order models, LIP. Note that the empirical
average does not strictly decrease, as tasks are randomly sampled and are of
varying difficulty.

duration to ease the problem difficulty of (TO) when dealing
with high-dimensional robots [51], [71]. Freeing the duration
can certainly be a variation of the examples and we left it for
future work.

The optimization results are shown in Fig. 4, where the
costs are normalized by the optimal cost of (TO) without
ROM embedding (i.e. without the constraints gc). The cost
function hγ was chosen to be the weighted sum of squares of
the robot input u, the generalized velocity v and acceleration
v̇. In Examples 1, 2 and 5, we heavily penalize the input
term which is a proxy of a robot’s energy consumption. For
the other examples, we heavily penalize the acceleration v̇.
We observed that Cassie’s motions with the initial ROM are
very similar among all examples. In contrast, the motions with
optimal ROMs are mostly dependent on the cost function hγ ,
given the same ROM parameterization. Compared to Example
1, the optimal motion of Example 3 shows more vertical pelvis
movement.

A comparison between Example 1 to Example 2 shows the
effect of the order of the monomials nφ in the basis function.

8

We can see in Fig. 4 that these two examples share the same
starting cost, because the initial weights on the monomials are
zeros, making the trajectory optimization problems identical.
Additionally we can also see that parameterizing the ROM
with second-order monomials seems sufficient for the task
space of Examples 1 and 2, since the final normalized cost
is close to 1.

A comparison between Example 1 to Example 3 shows the
effect of different choices of cost function hγ . The initial cost
of Example 3 is much higher than Example 1’s, which we
can interpret as the LIP model being more restrictive under
the performance metric of Example 3 than that of 1.

A comparison between Example 3 and Example 4 shows the
effect of the task space. Example 4’s task space is a subset
of Example 3’s, specifically the part of the task space with
bigger stride length. We would expect the LIP model does
not perform well with big stride length, and indeed Fig. 4
shows that the initial cost of Example 4 is higher than that of
Example 3. Fortunately, a high initial cost provides us with
a bigger room of potential improvement. As we see in Table
I, Example 3 has higher cost reduction than Example 1, and
Example 4 has the highest cost reduction.

In Example 5, the dimension of the task space4 is increased
compared to the other examples, and we only parameterize the
ROM dynamics g. That is, the embedding function r remains
to be a simple forward kinematic function – the center of mass
position relative to the stance foot. In this case, the algorithm
was again able to find an optimal model, and the result shows
that parameterizing only the ROM dynamics g is sufficient
enough for achieving near full model performance (about 5%
higher than full-order model’s performance).

The optimized models are capable of expressing more input-
efficient motions than the LIP model, better leveraging the nat-
ural dynamics of Cassie.The reduced-order model optimization
improves the performance of the robot, while maintaining the
model simplicity. We note that the optimal model, unlike its
classical counterpart, does not map easily to a physical model,
if the embedding function r contains abstract basis functions
such as monomials. While this limits our ability to attach
physical meaning to y and τ , it is a sacrifice that one can
make to improve performance beyond that of hand-designed
approaches.

IV. MPC FOR A SPECIAL CLASS OF ROM

After a ROM is optimized, we embed it in the robot via an
MPC to achieve desired tasks, depicted in Fig. 1. Specifically,
in this and the next section (Sections IV and V), we build upon
Example 5. Example 5 limits the ROM to a fixed embedding
function r, the CoM position relative to the stance foot. This
physically-interpretable embedding simplifies the planner and
enables a richer performance analysis in Section V. The
planner for a general ROM will be introduced in Section VI.

The MPC structure is shown in Fig. 5. It contains a high-
level planner in the reduced-order space (Section IV-A) and a

4The dimension here is the non-degenerate dimension, meaning the task
dimension with non-zero volume. In Example 5, the dimension is 3 because
we vary the stride length, ground incline and turning rate.

Fig. 5. The diagram of the model predictive control (MPC) introduced in
Section IV. The MPC is composed of the controller process and the planner
process, and it contains a time-based finite state machine which outputs
either left or right support state. This finite state machine determines the
contact sequence of the high-level planner and the contact mode of the low-
level model-based controller. The high-level planner solves for the desired
reduced-order model trajectories and swing foot stepping locations, given
tasks (commands) and the finite state. For reduced-order models without body
orientation (e.g. CoM model without moment of inertia), we send the turning
rate command to the controller process instead of planner process. Inside the
controller process, the regularization trajectories are used to fill out the joint
redundancy of the robot. These regularization trajectories are derived from
simple heuristics such as maintaining a horizontal attitude of the pelvis body,
having the swing foot parallel to the contact surface, and aligning the hip yaw
angle with the desired heading angle. All desired trajectories are sent to the
Operational Space Controller (OSC) which is a quadratic-programming based
inverse-dynamics controller [72], [73].

low-level tracking controller in the full-order space (Section
IV-B). The high-level planner receives the robot state and
tasks, and plans for the desired ROM trajectory and the foot-
steps of the robot. The controller tracks these desired trajectory
and footsteps, while internally using nominal trajectories to
handle the system redundancy.

A. Planning with Reduced-order Models

We formulate a reduced-order trajectory optimization prob-
lem to walk ns strides, using direct collocation method de-
scribed in Section II-C to discretize the trajectory into n knot
points. Under the premise that the ROM embedding r is the
CoM, we further assume the ROM does not have continuous
inputs τ (e.g. center of pressure) but it has discrete inputs
τfp ∈ R2 which is the stepping location of the swing foot
relative to the stance foot. Let z = [y, ẏ] ∈ R2ny , and let z−

and z+ be the reduced state of pre- and post-touchdown event,
respectively. The discrete dynamics is

z+ = z− +Bfpτfp (16)

with

Bfp =

[
−1 0 0 0 0 0
0 −1 0 0 0 0

]T
.

The first two rows of Eq. (16) correspond to the change in
stance foot reference for the COM position. The last three

9

Trajectory yosci dim yosci
cost weight W Kp Kd

x y z x y z x y z
reduced-order model 3 0.1 0 10 10 0 50 0.2 0 1
pelvis orientation 3 2 4 0.02 200 200 0 10 10 10
swing foot position 3 4 4 4 150 150 200 1 1 1
swing leg hip yaw joint 1 0.5 40 0.5
swing leg toe joint 1 2 1500 10

TABLE II
TRAJECTORIES AND GAINS IN THE OPERATIONAL SPACE CONTROL (OSC)

rows are derived from the assumption of zero ground impact
at the foot touchdown event.

To improve readability, we stack decision variables into
bigger vectors z = [y, ẏ] ∈ R2ny , Z = [z0, z1, ..., zn] ∈
R2ny(n+1), and Tfp = [τfp,1, ..., τfp,ns] ∈ R2ns . The cost
function of the planner is quadratic and expressed in terms of
Z and Tfp. The planning problem is

min
Z,Tfp

‖Z − Zd‖2WZ
+ ‖Tfp‖2WT

s.t. ROM continuous dynamics (Eq. (7b)),
ROM discrete dynamics (Eq. (16)),
Ckinematics(Z,Tfp) ≤ 0,
z0 = current feedback reduced-order state,

(17)

where WZ and WT are the weights of the norms, Zd is a
stack of desired states which encourage the robot to reach a
goal location and regularize velocities, and Ckinematics ≤ 0 is
the constraints on step lengths and stepping locations relative
to the CoM. After solving Eq. (17), we reconstruct the desired
ROM trajectory yd(t) from the optimal solution Z∗, and we
construct desired swing foot trajectories from T∗fp with cubic
splines.

B. Operational Space Controller
A controller commonly used in legged robots is the

quadratic-programing-based operational space controller (QP-
based OSC), which is also referred to as the QP-based whole
body controller [72], [73]. Assume there are Ny number of
outputs yosci (q), with desired outputs yosci,d (t), where i =
1, 2, ...Ny . For each output (neglecting the subscript i), we
can derive the commanded acceleration as the sum of the
feedforward acceleration of the desired output and a PD
control law

ÿosccmd = ÿoscd +Kp(y
osc
d − yosc) +Kd(ẏ

osc
d − ẏosc).

At a high level, the OSC solves for robot inputs that minimize
the output tracking errors, while respecting the full model dy-
namics and constraints (essentially an MPC but with zero time
horizon). The optimal control problem of OSC is formulated
as

min
v̇,u,λ,ε

ny∑
i=1

‖ÿosci − ÿosci,cmd‖2Wi
+ ‖u‖2Wu

+ ‖ε‖2Wε
(18a)

s.t. ÿosci = Jiv̇ + J̇iv, i = 1, ..., Ny (18b)
Dynamics constraint (Eq. (1)) (18c)

ε = Jhv̇ + J̇hv (18d)
umin ≤ u ≤ umax (18e)
Contact force constraints (18f)

where ‖ · ‖W is the weighted 2-norm, (18d) contains Cassie’s
four-bar-linkage constraints, fixed-spring constraints and re-
laxed contact constraints (relaxed by slack variables ε), and
(18f) includes friction cone constraints, non-negative normal
force constraints and force blending constraints for stance leg
transition.

Table II shows all trajectories tracked by the OSC and
their corresponding gains and cost weights. The trajectories
of the reduced-order model, pelvis orientation and swing foot
position are all 3 dimensional, while the hip yaw joint and toe
joint of the swing foot are 1 dimensional. The symbols (x,y,z)
in Table II indicate the components of the tracking target.
They do not necessarily mean the physical (x, y, z) axes for
the reduced-order model, since the model optimization might
produce a physically non-interpretable model embedding r.

In the existing literature of bipedal robots, robot’s floating
base position (sometimes the CoM position) and orientation
are often chosen to be control targets. They have 6 degrees
of freedom (DoF) in total. In the case of fully-actuated robots
(i.e. robots with flat feet), there is enough control authority
to servo both the position and orientation. For underactuated
robots, the existing approaches often give up tracking the
trajectories in the transverse plane (x and y axis), because
it is not possible to instantaneously track trajectories whose
dimension is higher than the number of actuators (or we have
to trade off the tracking performance). In this case, motion
planning for discrete footstep locations is used to regulate the
underactuated DoF. In our control problem, we also face the
same challenge since Cassie has line feet. The total dimension
of the desired trajectories in Table II is 11, while Cassie only
has 10 actuators. Following the common approach, we choose
not to track the second element of the ROM in OSC, because
it corresponds to the lateral position of the CoM for the initial
model (a competing tracking objective to the pelvis roll angle)
and maintaining a good pelvis roll tracking is crucial for stable
walking. Instead, the second element of ROM is regulated by
the desired swing foot locations via the planner in Eq. (17),
even though the OSC does not explicitly track it.

C. Hardware Setup and Solve Time

We implement the MPC in Fig. 5 using the Drake toolbox
[44], and the code is publicly available in the link provided in
the Abstract. In hardware experiment, the MPC planner runs
on a laptop equipped with Intel i7 11800H, and everything else
(low-level controller, state estimator, etc) on Cassie’s onboard
computer. These two computers communicate via LCM [74].
A human sends walking velocity commands to Cassie with a
remote controller. Cassie is able to stably walk around with

10

both the initial ROM and the optimal ROM (shown in the
supplementary video).

The planning horizon was set to 2 foot steps with stride
duration being 0.4 seconds. With cubic spline interpolation
between knot points, we found that 4 knot points per stride
was sufficient. IPOPT [75] was used to solve the planning
problem in Eq. (17), and the solve time was on average
around 6 milliseconds with warm-starts. We observed that
this solve time was independent of the reduced-order models
(initial or optimal) in our experiments. In contrast to the ROM,
similar code required tens of seconds for the simplified Cassie
model for a single foot step. As the following sections will
show, Cassie’s performance (with respect to the user-specified
cost function) with the optimal model is better than with
the initial model. This demonstrates that the use of ROM
greatly increases planning speed, and that the optimized ROM
improves the performance of the robot.

V. PERFORMANCE EVALUATION AND COMPARISON

In this section, we evaluate the performance of the robot
(with respect to a user-specified cost function h̃γ in Section
III-C) in the following ROM settings:

(R1) without reduced-order model embedding,
(R2) with initial reduced-order model embedding,
(R3) with optimal reduced-order model embedding.

Additionally, the evaluation is done in the following cases:

(C1) trajectory optimization (open-loop),
(C2) simulation (closed-loop),
(C3) hardware experiment with real Cassie (closed-loop),

where (C1) is labeled as open-loop, while the others are
considered closed-loop, because trajectory optimization is an
optimal control method that solves for control inputs and
feasible state trajectories simultaneously, without requiring a
feedback controller. Table III lists the experiments conducted
in this section. We note that (C1) is the same as Eq. (TO)
but with a different task distribution, and that (R1) is only
evaluated in (C1) because it serves as an idealized benchmark
for comparison.

A. Experiment Motivations

1) Motivation for (C1): In Section III, we optimized for
a reduced-order model given a task distribution. Here, one
objective is to evaluate how well the model generalizes to
out-of-distribution tasks. Additionally, trajectory optimization
provides the ideal performance benchmark for the closed-loop
system to compare to.

2) Motivation for (C2): Trajectory optimization is used in
Eq. (TO) to find the optimal model based on the open-loop
performance. (C2) evaluates how well the cost reduction in
open-loop can be translated to the closed-loop system with
the MPC from Section IV.

3) Motivation for (C3): (C3) evaluates how well the per-
formance improvement can be translated to hardware.

TABLE III
EXPERIMENTS CONDUCTED IN SECTION V (MARKED WITH X)

Stride length variation < 2 cm
Side stepping variation < 3 cm
Pelvis height variation < 3 cm
Pelvis yaw variation < 0.1 rad

Window size 4 consecutive footsteps
TABLE IV

CRITERIA TO DETERMINE PERIODIC WALKING GAITS

B. Experiment Setups
In all experiments in this section, we use the initial and

the optimal ROM from Example 5. Additionally, for all
performance evaluations, we use the cost function h̃γ from
Example 5 which mainly penalizes the joint torques.

1) (C1) Trajectory Optimization: We evaluate the open-
loop performance by running the full-model trajectory op-
timization in Eq. (TO) over a wide range of tasks (stride
length, turning rate, ground incline, etc). As a special case,
(C1) combined with (R1) corresponds to Eq. (TO) without
the constraint gc = 0.

2) (C2) Simulation: We use Drake simulation [44]. The
MPC horizon is set to two footsteps, and the duration per step
is fixed to 0.35 seconds which is the same as that of open-loop.
Similar to (C1), we evaluate the performance at different tasks.
For each desired task, we run a simulation for 12 seconds and
extract a periodic walking gait based on a set of criteria listed
in Table IV. Then we compute the cost and the actual achieved
tasks (stride length, turning rate, etc) of that periodic gait.

3) (C3) Hardware Experiment: Some heuristics are intro-
duced to the MPC in order to stabilize Cassie well. For
example, we add a double-support phase to smoothly transition
between two single-support phases by linearly blending the
ground forces of the two legs. This is critical for Cassie,
because unloading the springs of the support leg too fast when
transitioning into swing phase can cause foot oscillation and
bad swing foot trajectory tracking. The double-support phase
duration is set to 0.1 seconds, and the swing phase duration
is decreased to 0.3 seconds, compared to the nominal 0.35
seconds of stride duration in the trajectory optimization.

The hardware setup is described in Section IV-C. During
the experiment, we send commands to walk Cassie around and
make sure that the safety hoist does not interfere with Cassie’s
motion. After the experiment, we apply the criteria listed in
Table IV to extract periodic gait for performance evaluation.

C. Turning and Sloped Walking in Simulation
The goal of this section is to evaluate model performance

in simulation. We use the initial and the optimal model from

11

(a) Trajectory optimization, (C1). (b) Simulation, (C2).

Fig. 6. Cost comparison between the initial model (R2) and the optimal model (R3). Each plot shows the ratio of the optimal model’s cost to the initial
model’s cost. For these examples, the ROM reduces the cost across the entire task space. The color scheme red-to-blue illustrates the degree to which the
ROM shows improvement, with red corresponding to a minimal improvement and blue to a 30% reduction. The scales of the axes are the same between the
trajectory optimization (C1) and the simulation (C2) for ease of comparisons.

Example 5 of Section III-E. The training task distribution of
this model covers various turning rates, ground inclines and
positive stride lengths, shown in Table I. During performance
evaluation (both (C1) and (C2)), we increase the task space
size to two times of that of training stage in order to examine
the optimal model’s performance on the both seen (from
training) and unseen tasks.

To visualize the performance improvement, we compare the
cost landscapes between the initial and the optimal model.
For (C1) and (C2), we first derive the cost landscapes of both
models using the cost function h̃γ and then superimpose them

in terms of cost ratio (i.e. ratio of (R3)’s cost to (R2)’s cost).
The cost landscape comparisons are shown in Fig. 6. The
red-blue color bar represents different levels of performance
improvement in terms of h̃γ . Green color corresponds to the
tasks acquired by the optimal model (i.e. the task that the initial
model cannot execute). Orange color corresponds to the task
lost by using the optimal model. We see in Fig. 6 that the
optimal ROM outperforms the LIP across all depicted tasks,
as the cost ratios are smaller than 1, indicated by the color
bar. In trajectory optimization, the maximum cost reduction is
30%, occurring at a stride length of approximately 0.38 meters

12

Fig. 7. A track designed to showcase the performance difference between
the LIP and the optimal ROM in simulation. The video of Cassie finishing
the track can be found in the supplementary materials.

LIP Optimal ROM Speed Improvement
Straight line (5m) 5.72 (s) 4.05 (s) 41%

Fast 90-degree turn 1.65 (s) 1.2 (s) 38%
Downhill (20%) 11.67 (s) 8.4 (s) 39%

S-turns 20.37 (s) 14.47 (s) 41%
Uphill (50%) failed 17.73 (s) -

TABLE V
COMPLETION TIME FOR SOME SEGMENTS OF THE COURSE.

and a turning rate of 0.71 rad/s, indicated by the pink triangle
in Fig. 6a. On the other hand, the maximum cost reduction in
simulation is 23%, observed at a stride length of approximately
0.02 meters and a -0.34 radians ground incline, indicated by
the pink cross in Fig. 6b. This reduction in cost implies, for
instance, that Cassie is able to complete the same task with
23% less joint torque in simulation.

Besides the improvement in terms of cost ratio, we also
observe in simulation that the optimal ROM gained new task
capability (indicated by the green area). For example, Cassie
is capable of walking 54% faster on a slope of 0.2 radian when
using the optimal ROM. Cassie also gets better in climbing
steeper hills. At 0.1m stride length, Cassie can climb up a hill
with 32% steeper incline. Overall, the task region gained is
much bigger than the lost in simulation.

Comparing the cost landscape between the trajectory op-
timization and simulation, we can see that the task region
gained are similar5. Cassie in general can walk faster at
different turning rates and on different ground inclines. We
also observed that the cost landscapes of the open- and closed-
loop share a similar profile in ground incline. Both show bigger
cost reduction in walking downhill than uphill. In contrast,
the landscapes in turning rate look different between the open
and closed loop. This is partially because there is only one
stride (left support phase) in trajectory optimization while we
average the cost over 4 strides in the simulation. Additionally,
there is a difference in stride lengths between the open- and

5In the case of (C1), there was not a clear threshold for defining the failure
of a task. We picked a cost threshold at which the robot’s motion does not
look abnormal.

Fig. 8. Cost comparison between the initial model (R2) and the optimal model
(R3). The cost h̃γ is the cost function in Eq. (TO). For trajectory optimization
and simulation, we densely sampled the tasks and interpolated the costs. For
the hardware experiment, we plot the costs of collected data points directly
in the figure without interpolation. To collect the data on hardware, we used
a remote control to walk Cassie around, and we applied a moving window
of 4 foot steps to extract periodic gaits according to Table IV. We note that
there was about 2 cm of height variation in the hardware experiment, but we
normalized every extracted data point to the same height using the height-cost
relationship from the trajectory optimization to make fair comparisons.

closed-loop, showing a control challenge in stabilizing around
high-speed nominal trajectories. This gap can be mitigated
by increasing the control gains in simulation. However, we
avoid using unrealistic high gains because they do not work
on hardware.

In Fig. 8, the dashed-line boxes represent the training task
space used in the model optimization stage. There is not a
strong correlation between the cost ratio and the training space.
However, we can observe that the performance of the optimal
ROM generalizes well to the unseen task (region outside the
dashed-line box). For example, the cost reduction ratio stays
around 16% at different turning rates in simulation.

Lastly, we designed a track shown in Fig. 7 for Cassie to fin-
ish as fast as possible to showcase the capability of the optimal
ROM. The track includes various segments requiring Cassie to
turn by different angles and walk on different sloped grounds.
To enable Cassie to race through the track, we implemented
a high-level path-following controller that sends commands
(such as walking velocity) to the MPC. We tuned the path-
following controller parameters, so that Cassie can finish many
segments as fast as possible without falling off the track.
The parameters were tuned separately for each model. We
observe that, during high-speed walking, the optimal model
can track the commanded velocity better than the LIP model,
and that the actual top speed is achieved understand different
commanded velocities. Quantitatively, Cassie on average can
walk about 40% faster with the optimal ROM, shown in Table
V. This speed improvement reflected the periodic-walking

13

(a) Initial model (R2). 2D slice at CoM position = 0m in y axis
(when the CoM is right above the stance foot).

(b) Optimal model (R3). 2D slice at CoM position = 0m in y axis
(when the CoM is right above the stance foot).

(c) Optimal model (R3). 2D slice at CoM position = -0.2m in y axis
(when the CoM is to the right of the left stance foot, for example).

Fig. 9. The vector fields of the ROM dynamics g over the CoM x and z
position. In this example, the dynamics is the acceleration of the CoM, which
is a function of the CoM position and velocity defined in Eq. (7b). The first
plot is the initial model’s dynamics, while the latter two are that of the optimal
model at two different slices of CoM y position. In all plots, the CoM velocity
is 0. We note that the size of the vectors only reflects the relative magnitude.
The absolute magnitude of the vectors for the first two plots are shown in
Fig. 10, although the scales of the x axis are different.

(a) Initial model (R2). 2D slice at CoM position = 0m in y axis (when the CoM
is right above the stance foot).

(b) Optimal model (R3). 2D slice at CoM position = 0m in y axis (when the
CoM is right above the stance foot).

Fig. 10. The magnitude of ROM dynamics g over the CoM x and z
position. The settings of Fig. 10a and 10b are the same as Fig. 9a and 9b,
respectively. The magnitude plots show that the optimal model has smaller
CoM accelerations, which implies smaller ground reaction forces, particularly
in the x axis (implied by the vector fields in Fig. 9). We observed in the
experiments that these force vectors align more closely with the normal
direction of the ground.

result shown in the cost landscape plots in Fig. 6. Additionally,
we observed that for the task of 50% ground incline Cassie
with LIP exhibited many stop-and-go motions and eventually
fell, while Cassie with the optimal ROM was able to complete
the incline steadily.

D. Straight-line Walking on Hardware

In this section, we aim to evaluate the model performance
on the real robot. We evaluate the cost for different stride
lengths while fixing the pelvis height (0.95 m), and then
plot the costs of both the initial and the optimal model
directly in Fig. 8. We also conducted the same experiment
but in trajectory optimization and simulation for comparison.

14

Additionally, in order to maximize the controller robustness for
the hardware experiment, we constrained the center of pressure
(CoP) close to the foot center during the model optimization
stage, although this limits the potential performance gain of
the optimal ROM.

In Fig. 8, we can see that the performance of the optimal
ROM (evaluated by Cassie’s joint torque squared in this case)
is better than that of the initial ROM. On hardware, the
performance improvement is around 10% for low-speed and
medium-speed walking. As a comparison, the cost improves
by up to 8% in open-loop and improves by up to 14% in
simulation using the same optimal ROM. We can also observe
that the hardware costs are higher than those of open-loop
and simulation, which might result from additional torques
required to track the desired trajectories due to sim-to-real
modeling errors. Nonetheless, the improvement percentages
are fairly similar across the board. This demonstrates that
the model performance was successfully transferred to the
hardware via the MPC, despite the modeling error in the full-
order model.

E. Optimal Robot Behaviors

In order to understand the source of the performance im-
provement, we look at the motion of the robot and the center
of mass dynamics (the ROM dynamics g). The discussions in
this section are based on the straight-line walking experiments
in Section V-D.

We observe in the full-model trajectory optimization that
the average center of pressure (CoP) stays at the center of the
support polygon when we use LIP on Cassie (R2). In contrast,
the CoP moves toward the rear end of the support polygon
where there is no ROM embedding (R1). Interestingly, this
CoP shift emerges when using the optimal model (R3) in the
open-loop trajectory, and we observe the same behavior in
both simulation and hardware experiment. On hardware, we
confirm this by visualizing the projected CoM on the ground
when Cassie walks in place. The projected CoM is close to
CoP, since there is little centroidal angular momentum for
walking in place. The projected CoM of the hardware data
indeed shifts towards the back of the support polygon when
using the optimal model.

To understand why the projected CoM moves backward, we
plot the ROM dynamic function g in Fig. 9 for both the initial
model and the optimal model. In the case of the initial model
(LIP), we know that the dynamics should be symmetrical about
the z axis, specifically the acceleration should be 0 at x = 0
(Fig. 9a). This vector field profile, however, looks different in
the case of the optimal model. As we can see from Fig. 9b, the
area with near-zero acceleration shifts towards the -x direction
(i.e. to the back of the support polygon), and interestingly it
also slightly correlates to the height of the CoM. The higher
the CoM is, the further back the region of zero acceleration
is. Additionally, we know that the LIP dynamics in the x-
z plane is independent of the CoM y position. That is, no
matter which slice of the x-z plane we take, the vector field
should look identical. For the optimal model, the dynamics in
the x-z plane is a function of the CoM y position. The further

away the CoM is from the stance foot (bigger foot spread),
the further back the zero acceleration region is.

Aside from the vector field plots of the CoM dynamics, we
also visualize the absolute value of the vectors in Fig. 10. We
can see that the magnitude of the CoM acceleration in general
becomes smaller when using the optimal model. This implies
that the total ground reaction force is smaller with the optimal
model, even if the robot walks at the same speed. Given the
same walking speed, the robot decelerates and accelerates
less in the x axis when using the optimal model (i.e., the
average speed is the same, but the speed fluctuation becomes
smaller after using the optimal model). We hypothesize that the
decrease in ground force magnitude partially contributes to the
decrease in the joint torque in the case of Cassie walking. The
fact that there is less work done on the CoM during walking
with the optimal ROM might have led to the decrease in torque
squared which is a proxy for energy consumption.

The experiments in Section V demonstrate two things. First,
the optimal behavior and the performance are transferred from
the open-loop training (left side of Fig. 1) to a closed-loop
system (right side of Fig. 1). Second, the optimal reduced-
order model improves the real Cassie’s performance, while the
low dimensionality permits a real time planning application.

VI. MPC FOR A GENERAL ROM

Sections IV and V limit the ROMs to a predefined embed-
ding function r which simplifies the planner and enables real
time planning results. In this section, we present an MPC for-
mulation for a general ROM, where full-order states at swing
foot touchdown events were used to provide physical meaning
to the resulting plan. Given an ongoing steady improvement in
computational and algorithmic speed, we believe this general
MPC will soon be solvable in real time on hardware.

A. Hybrid Nature of the Robot Dynamics

Shown in Eq. (2), the dynamics of the full model is hybrid
– it contains both the continuous-time dynamics and discrete-
time dynamics due to the foot collision. In contrast, many
existing reduced-order models assume zero ground impacts
at foot touchdown. This is partially due to the fact that the
exact embedding of a reduced-order discrete dynamics does
not always exist. For example, we could have two pre-impact
states x of the full model that correspond to the same reduced-
order states, but the post-impact states of the full model
map to two different reduced-order states. In this case, the
reduced-order discrete dynamics is not an ordinary (single-
valued) function. Therefore, in order to capture the exact
full impact dynamics in the planner, it is necessary to mix
the reduced-order model with the discrete dynamics from the
full-order model. We note that the traditional approaches to
reduced-order planning and embedding must also grapple with
approximations of the impact event.

In addition to the issue above, the mix of reduced- and
full-order models also seems necessary if we do not retain the
physical interpretability of the embedding r when planning for
the optimal footstep locations in the planner. This results in a
low-dimensional trajectory optimization problem, a search for

15

yj(t) and τj(t), with additional decision variables x−,j , x+,j ,
representing the pre- and post-impact full-order states. The
index j refers to the j-th stride. The constraints relating the
reduced-order state to the full-order model and the impact
dynamics are

yj(tj) = r(q−,j ; θe), ẏj(tj) =
∂r(q−,j ; θe)

∂q−,j
q̇−,j ,

yj+1(tj) = r(q+,j ; θe), ẏj+1(tj) =
∂r(q+,j ; θe)

∂q+,j
q̇+,j ,

and Chybrid(x−,j , x+,j ,Λj) ≤ 0,

(19)

where tj is the impact time (ending the j-th stride), Chybrid
represents the hybrid guard S and the impact mapping ∆
without left-right leg alternation6 [2].

B. Planning with ROM and Full-order Impact Dynamics

Similar to Section IV, we formulate a reduced-order tra-
jectory optimization problem to walk ns strides. However,
we replace the discrete footstep inputs Tfp with the full
robot states x−,j and x+,j . The key difference between the
planning problems in Section IV and this section is that here
we introduce new variables
• full-order states x−,j , x+,j and ground impulses Λj (to

capture the exact full-order impact dynamics), and
• the ROM’s continuous-time input τ .

To improve readability, we stack decision variables into
bigger vectors T = [τ1, ..., τn] ∈ Rnτn and X =
[x−,1, ..., x−,ns , x+,1, ..., x+,ns] ∈ R2nxns .

Costs are nominally expressed in terms of [y, ẏ] and τ ,
though the pre- and post-impact full-order states can also be
used to represent goal locations. In addition to the constraints
in Eq. (19), we impose constraints Ckinematics(X) ≤ 0 on
the full model’s kinematics such that the solution obeys joint
limits, stance foot stays fixed during the stance phase, and legs
do not collide with each other.

The planning problem with the general ROM is

min
w

‖T‖2WT
+ ‖Z − Zreg‖2WZ

+ ‖X −Xreg‖2WX

s.t. Reduced-order dynamics (Eq. (7b)),
Hybrid constraints (Eq. (19)),
Ckinematics(X) ≤ 0,
x0 = current feedback full-order state,

(20)

where w = [Z,T, x0, X,Λ1, ...,Λns] ∈ Rnw , WT , WZ and
WX are the weights of the norms, Zreg is the regularization
state for the reduced model, and Xreg is the regularization
state for the full state and contains the goal location of the
robot. After solving Eq. (20), we reconstruct the desired ROM
trajectory yd(t) from the optimal solution Z∗. Different from
Section IV, the optimal solution w∗ here also contains the
desired full-order states X∗ at impact events, from which we
derive not only the desired swing foot stepping locations but
also the desired trajectories for joints such as swing hip yaw
and swing toe joint. Additionally, since there are full states in
the planner, we can send the turning rate command directly to
the ROM planner.

6The impact mapping ∆ can be simplified to identity if we assume no
impact (i.e. swing foot touchdown velocity is 0 in the vertical axis).

Fig. 11. An example of the real time planner in Eq. (20). Given a task of
covering two meters in four steps starting from a standing pose, we rapidly
plan a trajectory for the reduced-order model. The high-dimensional model is
used to capture the hybrid event at stepping, as illustrated in the diagram.

Fig. 11 visualizes the pre-impact states in the case where the
robot walks two meters with four strides, connected by the hy-
brid events and continuous low-dimensional trajectories yj(t).
Although there is no guarantee that the planned trajectories
yj(t) are feasible for the full model except those at the hybrid
events, we were able to retrieve q(t) from yj(t) through inverse
kinematics, meaning the embedding existed empirically. We
note that classical models like LIP also provide no guarantees
[76]. For instance, there is no constraint on leg lengths in
the ROM which could lead to kinematic infeasibility. The
formulation in Eq. (20) preserves an exact representation of
the hybrid dynamics, but results in a significantly reduced
optimization problem.

C. Implementation and Experiments

We implement the MPC using Eq. (20) for both simulation
and hardware experiments (the hardware setup is the same
as Section IV-C). In simulation, we were able to transfer the
open-loop performance to closed-loop performance with this
new MPC. However, on hardware, the off-the-shelf solvers
IPOPT and SNOPT were not capable of solving the planning
problem in Eq. (20) fast enough or well enough to enable a
high-performance real time MPC. With IPOPT, the planner
simply did not run fast enough. With SNOPT, even though
the solve time can be decreased down to 30ms with loose
optimality tolerance and constraint tolerance, we sacrificed
the solution quality too much to achieve big stride length on
Cassie. Nonetheless, we believe that the general MPC will
soon be solvable within reasonable time constraints on hard-
ware, as computer technology advances steadily. Additionally,
a well-engineered custom solver can also help enable real time
planning. Boston Dynamics has shown their success in the
nonlinear MPC solver with the centroidal momentum model

16

and full model configurations7 [79].

VII. DISCUSSION

A. Model Parameterization
1) Trade-off between planning speed and performance:

A fundamental trade-off exists between planning speed and
model performance [27], [29]. As the model (i.e. r and g)
becomes more expressive, we see slower planning speeds and
better performances. This model expressiveness increases as
we
• increase the dimension of the model,
• increase the number of basis functions (or number of

neurons in a neural network), or
• use universal function approximators such as mono-

mial basis functions (polynomials) instead of physically-
interpretable functions (particular set of functions).

Additionally, under the same model expressiveness, we ob-
serve a trade-off between the task space size and the model
performance. Larger task spaces require the model to be less
specialized, which might result in a lower average perfor-
mance.

2) Linear models (with linear basis functions): We found
that, for some choice of task space, linear models perform
almost as well as the full model. This linear reduced-order
dynamics transforms the MPC in Eq. (17) into a quadratic
optimization problem, allowing for rapid planning. This linear
model also renders a closed-form solution and makes it
suitable for existing techniques in robust control design and
stability analysis. For challenging or complex task spaces,
linear basis functions sacrifice significant performance when
compared with those of higher degree. We emphasize that our
method can be used to optimize models of any chosen degree,
and leave such selection to the practitioner.

3) Alternative basis functions: Beside different orders of
monomials, we also experimented with trigonometric mono-
mials (e.g. sina(x)cosb(x) where a, b ∈ N). However, we
found no notable difference with this basis set. Since quadratic
basis approaches optimal performance in model optimization
in Section III-E, we leave a broader exploration of choices of
basis functions as a possible future work.

4) Physical Interpretability of ROMs: Classical ROMs of-
ten maintain some level of physical interperability, because
they are built from mechanical components like springs and
masses. Our approach, which uses more general represen-
tations, does sacrifice this connection to human intuition.
However, we have found it beneficial to manually select the
embedding function r. This has the benefit of ensuring that
the reduced-order state remains human interpretable, which
is useful for specifying objectives for planning and control
in Section IV. One might also imagine restricting the space
of reduced-order dynamics functions g to maintain physical
connections (e.g. specifying nonlinear or velocity-dependent
springs, inspired by human studies [80]), though we leave this
to future work.

7The centroidal momentum model [77], [78] describes the actual dynamics
without imposing constraints on the full model. However, this momentum
model lacks positional representations, thus requiring the incorporation of
full model configurations in planning.

B. Performance Gap Between Open-loop and Closed-loop

The proposed approach to model optimization uses full-
model trajectory optimization. This has a few advantages.
First, it allows us to embed the reduced-order model into
the full model exactly via constraints. Second, it is more
sample efficient than the approaches in reinforcement learning
(such as [30]). However, using trajectory optimization leaves
a potential performance gap between the offline training and
online deployment, because trajectory optimization is an open-
loop optimal control method which does not consider any
controller heuristics by default. For instance, our walking
controller constructs the swing foot trajectory with cubic
splines, and we found the open-loop performance can be
transferred to the closed-loop better after we add this cubic
spline heuristic as a constraint in the trajectory optimization.

While we have seen the performance of the robot improve,
we also observed that the solver would exploit any degree
of freedom of the input and state variables during the model
training stage. For example, the center of pressure turned out to
play an important role in improving the performance (reducing
joint torques) of Cassie in Section V. If we had not regularized
the CoP (or the CoM motion) during the model optimization
stage, the solver would have moved the CoP all the way to
the edge of the support polygon. Although this exploitation
can potentially lead to a much bigger cost improvement, it
also hurts the robustness of the model. Under hardware noise
and model uncertainty, tracking the planned trajectories of
this optimal model cannot stabilize the robot well, and thus
the performance cannot be transferred to the hardware. One
principled way of fixing this issue is to optimize the robustness
of the trajectory alongside the user-specified cost function [81],
[82].

For the general optimal ROM MPC in Section VI, one
place where the performance gap can enter is the choice of
the cost function in Eq. (20). In our past experiments, we
simply ran a full model trajectory optimization and used this
optimal trajectory for the regularization term in Eq. (20). It
worked well, although there was a slight improvement drop.
To mitigate the gap, one could try inverse optimal control to
learn the MPC cost function given data from the full model
trajectory optimization.

Since our robot has one-DOF underactuation caused by line
feet design, it is not trivial to track the desired trajectory
of the reduced-order model within the continuous phase of
hybrid dynamics. We noticed in the experiment that there was
a noticeable performance difference between whether or not
we tracked the first element of the desired ROM trajectory.
Therefore, we conjecture that if we use a robot with a finite
size of feet, we could translate the open-loop performance to
the closed-loop performance better and more easily.

Lastly, we found that empirically it is easier to transfer
model performance from open-loop to closed-loop when we
fix the embedding function r, although the open-loop per-
formance improvement is usually much bigger (sometimes
near full-model’s performance) when we optimize both the
embedding function r and dynamics g. As a concrete exam-
ple, in some model optimization instances the optimal ROM

17

position y can be insensitive to the change of CoM position,
which makes it difficult to servo the CoM height. In the worst
case, this insensitivity could lead to substantial CoM height
movement and instability of the closed-loop system.

C. Limitations of Our Framework

In our bilevel optimization approach, the initial ROM must
be feasible for the inner-level trajectory optimization to obtain
a meaningful gradient for the outer-level optimization. This
means that we must initialize the ROM to one capable of walk-
ing, potentially limiting our ability to use stochastic initializa-
tion to explore the entire ROM space. Despite this potential
drawback, we note that random task sampling in Algorithm 1
can help escape certain local minima (effectiveness depends
on the cost landscape of the model optimization). Future work
could explore the role of this initialization, for instance by
evaluating performance when starting from multiple existing
hand-designed ROMs.

Our approach requires the user to determine the dimension
of the ROM. Increasing the dimension theoretically strictly im-
proves model performance, at the cost of MPC computational
speed. As a result, this defines a Pareto optimal front, without
a simple way to automatically determine the dimension. That
said, there are recent works which attempt to select between
models of varying complexity [27]–[29], which we believe
might be applied to our framework.

D. Generality of Our Framework

This paper focuses on applying the optimal ROMs to the
hardware Cassie, but throughout the project we observe that
LIP performs reasonable well for Cassie, particularly over
relatively simple task domains such as straight-line walking.
We hypothesize that this is due, in part, to the fact that Cassie’s
legs are relatively light. As an experiment, we investigated
the effect of foot weight on the performance improvement.
When increasing the foot’s mass to 4kg (the robot weighs
40kg in total), we observed that the LIP cost relative to the
full model’s increased from 1.3 to 1.8 and offered a greater
room for improvement, resulting in 40% torque cost reduction
for tasks similar to Example 1’s. Beside this investigation, we
also saw more than 75% of cost reduction for the five-link
planar robot in our prior work [33].

Furthermore, the proposed framework is agnostic to types of
robots and tasks (e.g. quadrupeds and dexterous manipulators).
This has implications all over robotics, given the need for
computational efficiency and the prevalence of reduced-order
models in locomotion and manipulation.

VIII. CONCLUSION

In this work, we directly optimized the reduced-order mod-
els which can be used in an online planner that achieved per-
formance higher than that of the traditional physical models.
We formulated a bilevel optimization problem and presented
an efficient algorithm that leverages the problem structure.
Examples showed improvements up to 38% depending on
the task difficulty and the performance metric. The optimal

reduced-order models are more permissive and capable of
higher performance, while remaining low dimensional. We
also designed two MPCs for the optimal reduced-order models
which enable Cassie to accomplish tasks with better perfor-
mance. In the hardware experiment, the optimal ROM showed
10% of improvement on Cassie, and we investigated the
source of performance gains for this particular model. We
demonstrated that the use of ROM greatly reduces planning
time, and that the optimized ROM improves the performance
of the robot beyond the traditional ROMs.

Although the model optimization approach presented in this
paper has the advantage of optimizing models agnostic to low-
level controllers, it does not guarantee that the performance
improvements from these optimal models can be transferred
to the robot via a feedback controller as discussed in Sec-
tion VII-B. One ongoing work is to fix the above issue by
optimizing the model in a closed-loop fashion, so that the
model optimization accounts for the controller heuristics and
maintains the closed-loop stability. This would also potentially
ease the process of realizing the optimal model performance
on hardware. Additionally, discussed in Section VI-A, an ap-
proximation is necessary if we were to find a low dimensional
representation of the full-order impact dynamics. In this work,
we only circumvented the hybrid problem by either using
a physically-interpretable ROM or mixing the full impact
dynamics with the ROM. Finding an optimal low-dimensional
discrete dynamics for a robot still remains an open question.

ACKNOWLEDGEMENTS

We thank Wanxin Jin for discussions on Envelope Theorem
and approaches to differentiating an optimization problem.
Toyota Research Institute provided funds to support this work.

APPENDIX A
HEURISTICS IN TRAJECTORY OPTIMIZATION

Solving the trajectory optimization problem in Eq. (4) or
(TO) for a high-dimensional robot is hard, since the problem
is nonlinear and of large scale. Even although there are off-the-
shelf solvers such as IPOPT [75] and SNOPT [70] designed
to solve large-scale nonlinear optimization problem, it is
often impossible to get a good optimal solution without any
heuristics, since there are many local optima. In this section,
we will talk from our experience about the heuristics that
might help to solve the problem faster and also find a solution
with a lower cost and closer to the global optimum. That said,
we have no objective manner in which to assess proximity
to global optimality, and thus this is a purely observational
criterion.

Let the nonlinear problem be

min
w

h̃(w)

s.t. f̃(w) ≤ 0
(21)

where w contains all decision variables, h̃ is the cost function,
and f̃ is the constraint function. It turned out that scaling either
w, h̃ or f̃ could help to improve the condition of the problem.
• w: Sometimes the decision variables are in different units

and can take values of different orders. For example, joint

18

angles of Cassie are roughly less than 1 (rad), while its
contact forces are usually larger than 100 (N). In this case,
we can scale w by some factor s, such that the decision
variables of the new problem are wscaled,i = siwi for
i = 1, 2, ..., nw. After the problem is solved, we scale
the optimal solution of the new problem back by w∗i =
1
si
w∗scaled,i.

• f̃ : The constraints f̃ can take various units just like
w. Similarly, we can scale each constraint individually.
Note that scaling constraints affects how well the original
constraints are satisfied, so one should make sure that the
constraint tolerance is still meaningful.

• h̃: In theory, scaling the cost does not affect the optimal
solution. However, it does matter in the solver’s algo-
rithm. It is desirable to scale the cost so that it is not
larger than 1 around the area of interest.

For more detail about scaling, we refer the readers to Chapter
8.4 and Chapter 8.7 of [83]. In addition to scaling the problem,
the following heuristics could also be helpful:
• Provide the solver with a good initial guess.
• Add small randomness to the initial guess: This helps to

avoid singularities.
• Add regularization terms to the cost function: This could

remove local minima in the cost landscape and can also
speed up the solve time. Adding regularization terms is
similar to the traditional reward shaping of Reinforcement
Learning [84] and the policy-regularized MPC [85].

• Add intermediate variables (also called slack variables
[86]): This can sometimes improve the condition num-
ber of the constraint gradients with respect to decision
variables. One example of this is reformulating the tra-
jectory optimization problem based on the single shooting
method into that based on the multiple shooting method
by introducing state variables [87].

• Use solver’s internal scaling option: In the case of
SNOPT [88], we found setting Scale option to 2 helps
to find an optimal solution of better quality. Note that
this option increases the solve time and demands a good
initial guess to the problem.

APPENDIX B
MIRRORED REDUCED-ORDER MODEL

A. Model definition
The model representation in Eq. (7) could be dependent

on the side of the robot. For example, when using the LIP
model as the ROM, we might choose the generalized position
of the model y to be the CoM position relative to the left foot
(instead of the right foot). In this case, we need to find the
reduced-order model for the right support phase of the robot.
Fortunately, we can derive this ROM by mirroring the robot
configuration q about its sagittal plane (Fig. 12) and reusing
the ROM of the left support phase. We refer to this new ROM
as the mirrored reduced-order model.

Let qm and vm be the generalized position and velocity of
the “mirrored robot”, shown in Fig. 12. Mathematically, the
mirrored ROM µm is

µm , (rm, g), (22)

Fig. 12. The mirror function M mirrors the robot configuration about the
sagittal plane. This function is necessary in planning and control when the
embedding function (Eq. (7a)) of the reduced-order model only represents
one side of the robot. For example, the embedding function of the LIP model
was chosen to be the CoM relative to the left foot (and not the right foot).

with

ym = rm(q) = r(qm) = r(M(q)), (23a)
ÿm = g(ym, ẏm, τ), (23b)

where rm is the embedding function of the mirror model, and
M is the mirror function such that qm = M(q) and q =
M(qm). We note that the two models, in Eq. (6) and (22),
share the same dynamics function g.

B. Time derivatives of the embedding function

Feedback control around a desired trajectory often requires
the first and the second time derivatives information. Here, we
derive these quantities for the mirrored ROM in terms of the
original embedding function r in Eq. (7a) and its derivatives.

1) ẏm: Let Jm be the Jacobian of the mirrored model
embedding rm with respect to the robot configuration q, such
that

ẏm = Jmq̇. (24)

The time derivatives of ym is

ẏm =
∂r(M(q))

∂M(q)

∂M(q)

∂q
q̇ = J(qm)

∂M(q)

∂q
q̇ = J(qm)q̇m

(25)
where J(qm) is the Jacobian of the original model embedding
r evaluated with qm. From Eq. (24) and (25), we derive

Jm = J(qm)
∂M(q)

∂q
(26)

where ∂M(q)
∂q is a matrix which contains only 0, 1, and -1.

2) ÿm: The i-th element of ÿm is

ÿm,i =
d

dt

(
∂ri(qm)

∂qm
q̇m

)
=

d

dt

∑
j

∂ri(qm)

∂qm,j
q̇m,j

=
∑
j

d

dt

(
∂ri(qm)

∂qm,j

)
q̇m,j +

∑
j

∂ri(qm)

∂qm,j

d

dt
(q̇m,j)

=
∑
jk

∂2ri(qm)

∂qm,j∂qm,k
q̇m,j q̇m,k +

∂ri(qm)

∂qm

d

dt
(q̇m) .

19

where ri is the i-th element of the embedding function. The
above equation can be expressed in the vector-matrix form

ÿm = q̇Tm∇2r(qm)q̇m + J(qm)q̈m

= J̇(qm, vm)q̇m + J(qm)q̈m

= J̇(qm, vm)q̇m + Jmv̇ (∵ Eq. (26))

(27)

where J̇(qm, vm) is the time derivatives of the J (of the
original model) evaluated with the mirrored position qm and
velocity vm.

REFERENCES

[1] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and
A. Del Prete, “Optimization-based control for dynamic legged robots,”
IEEE Transactions on Robotics, 2023.

[2] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE transactions on automatic
control, vol. 48, no. 1, pp. 42–56, 2003.

[3] H. Zhao, A. Hereid, W.-l. Ma, and A. D. Ames, “Multi-contact bipedal
robotic locomotion,” Robotica, vol. 35, no. 5, pp. 1072–1106, 2017.

[4] J. Reher, E. A. Cousineau, A. Hereid, C. M. Hubicki, and A. D. Ames,
“Realizing dynamic and efficient bipedal locomotion on the humanoid
robot durus,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1794–1801, IEEE, 2016.

[5] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged
terrain-derivation and application of the linear inverted pendulum mode,”
vol. 2, pp. 1405–1411, IEEE International Conference on Robotics and
Automation (ICRA), 1991.

[6] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D
linear inverted pendulum mode: a simple modeling for a biped walking
pattern generation,” pp. 239–246, IEEE International Conference on
Intelligent Robots and Systems (IROS), 2001.

[7] R. Blickhan, “The spring-mass model for running and hopping,” Journal
of biomechanics, vol. 22, no. 11-12, pp. 1217–1227, 1989.

[8] X. Xiong and A. D. Ames, “Dynamic and versatile humanoid walking
via embedding 3d actuated slip model with hybrid lip based stepping,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6286–6293,
2020.

[9] X. Xiong, J. Reher, and A. D. Ames, “Global position control on
underactuated bipedal robots: Step-to-step dynamics approximation for
step planning,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2825–2831, IEEE, 2021.

[10] M. Kasaei, A. Ahmadi, N. Lau, and A. Pereira, “A robust model-based
biped locomotion framework based on three-mass model: From planning
to control,” in 2020 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), pp. 257–262, IEEE, 2020.

[11] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion gen-
eration and control for biped robot-1 st report: Walking gait pattern
generation,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1084–1091, IEEE, 2009.

[12] T. Sato, S. Sakaino, and K. Ohnishi, “Real-time walking trajectory
generation method with three-mass models at constant body height
for three-dimensional biped robots,” IEEE transactions on industrial
electronics, vol. 58, no. 2, pp. 376–383, 2010.

[13] S. Shimmyo, T. Sato, and K. Ohnishi, “Biped walking pattern generation
by using preview control based on three-mass model,” IEEE transactions
on industrial electronics, vol. 60, no. 11, pp. 5137–5147, 2012.

[14] S. M. Kasaei, N. Lau, and A. Pereira, “A reliable hierarchical omnidi-
rectional walking engine for a bipedal robot by using the enhanced lip
plus flywheel,” in Human-Centric Robotics: Proceedings of CLAWAR
2017: 20th International Conference on Climbing and Walking Robots
and the Support Technologies for Mobile Machines, pp. 399–406, World
Scientific, 2018.

[15] S. Faraji and A. J. Ijspeert, “3lp: A linear 3d-walking model includ-
ing torso and swing dynamics,” the international journal of robotics
research, vol. 36, no. 4, pp. 436–455, 2017.

[16] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit humanoid
robot: Design, motion planning, and control for acrobatic behaviors,” in
2020 IEEE-RAS 20th International Conference on Humanoid Robots
(Humanoids), pp. 1–8, IEEE, 2021.

[17] A. Shaiju and I. R. Petersen, “Formulas for discrete time lqr, lqg, leqg
and minimax lqg optimal control problems,” IFAC Proceedings Volumes,
vol. 41, no. 2, pp. 8773–8778, 2008.

[18] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348,
1989.

[19] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[20] Y. Gong and J. W. Grizzle, “Zero dynamics, pendulum models, and
angular momentum in feedback control of bipedal locomotion,” Journal
of Dynamic Systems, Measurement, and Control, vol. 144, no. 12,
p. 121006, 2022.

[21] G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-
adaptive, alip-based bipedal locomotion controller via model predictive
control and virtual constraints,” in 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 6724–6731, IEEE,
2022.

[22] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body Motion Planning
with Centroidal Dynamics and Full Kinematics,” IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2014.

[23] A. Herzog, S. Schaal, and L. Righetti, “Structured contact force op-
timization for kino-dynamic motion generation,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 2703–2710, IEEE, 2016.

[24] P. Marion and the team, “Flipping the script with atlas.”
https://blog.bostondynamics.com/flipping-the-script-with-atlas.

[25] M. Posa, T. Koolen, and R. Tedrake, “Balancing and Step Recovery
Capturability via Sums-of-Squares Optimization,” in Robotics: Science
and Systems, 2017.

[26] T. Koolen, M. Posa, and R. Tedrake, “Balance control using center
of mass height variation: limitations imposed by unilateral contact,”
in Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International
Conference on, pp. 8–15, IEEE, 2016.

[27] H. Li, R. J. Frei, and P. M. Wensing, “Model hierarchy predictive control
of robotic systems,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 3373–3380, 2021.

[28] C. Khazoom, S. Heim, D. Gonzalez-Diaz, and S. Kim, “Optimal
scheduling of models and horizons for model hierarchy predictive
control,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9952–9958, IEEE, 2023.

[29] J. Norby, A. Tajbakhsh, Y. Yang, and A. M. Johnson, “Adaptive
complexity model predictive control,” arXiv preprint arXiv:2209.02849,
2022.

[30] A. Pandala, R. T. Fawcett, U. Rosolia, A. D. Ames, and K. A. Hamed,
“Robust predictive control for quadrupedal locomotion: Learning to
close the gap between reduced-and full-order models,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 6622–6629, 2022.

[31] Y.-M. Chen, G. Nelson, R. Griffin, M. Posa, and J. Pratt, “Inte-
grable whole-body orientation coordinates for legged robots,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 10440–10447, IEEE, 2023.

[32] K. Yamane, “Systematic derivation of simplified dynamics for humanoid
robots,” in 2012 12th IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2012), pp. 28–35, IEEE, 2012.

[33] Y.-M. Chen and M. Posa, “Optimal reduced-order modeling of bipedal
locomotion,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 8753–8760, IEEE, 2020.

[34] R. J. Full and D. E. Koditschek, “Templates and anchors: neurome-
chanical hypotheses of legged locomotion on land,” The Journal of
Experimental Biology, vol. 202, pp. 3325–3332, 1999.

[35] M. H. Raibert, H. B. Brown, and M. Chepponis, “Experiments in
Balance with a 3D One-Legged Hopping Machine,” The International
Journal of Robotics Research, vol. 3, pp. 75–92, jun 1984.

[36] M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, “The Simplest
Walking Model: Stability, Complexity, and Scaling,” Journal of Biome-
chanical Engineering, vol. 120, p. 281, apr 1998.

[37] A. L. Schwab and M. Wisse, “Basin of attraction of the simplest walking
model,” in ASME 2001 Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, 2001.

[38] K. Byl and R. Tedrake, “Metastable Walking Machines,” The Interna-
tional Journal of Robotics Research, vol. 28, pp. 1040–1064, aug 2009.

[39] C. Oguz Saglam and K. Byl, “Robust Policies via Meshing for
Metastable Rough Terrain Walking,” in Robotics: Science and Systems,
2014.

[40] M. Kelly and A. Ruina, “Non-linear robust control for inverted-
pendulum 2D walking,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4353–4358, IEEE, may 2015.

[41] T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, Part 1:

20

Theory and application to three simple gait models,” The International
Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012.

[42] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step
toward humanoid push recovery,” in 2006 6th IEEE-RAS international
conference on humanoid robots, pp. 200–207, IEEE, 2006.

[43] B. Wie and P. M. Barba, “Quaternion feedback for spacecraft large angle
maneuvers,” Journal of Guidance, Control, and Dynamics, vol. 8, no. 3,
pp. 360–365, 1985.

[44] R. Tedrake and the Drake Team Development, “Drake: A planning,
control, and analysis toolbox for nonlinear dynamical systems,” 2016.

[45] Y. Hurmuzlu and D. B. Marghitu, “Rigid body collisions of planar
kinematic chains with multiple contact points,” The international journal
of robotics research, vol. 13, no. 1, pp. 82–92, 1994.

[46] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames, “Models,
feedback control, and open problems of 3d bipedal robotic walking,”
Automatica, vol. 50, no. 8, pp. 1955–1988, 2014.

[47] A. Hereid, O. Harib, R. Hartley, Y. Gong, and J. W. Grizzle, “Rapid
bipedal gait design using c-frost with illustration on a cassie-series
robot,” arXiv preprint arXiv:1807.06614, 2018.

[48] J. Reher, W.-L. Ma, and A. D. Ames, “Dynamic walking with com-
pliance on a cassie bipedal robot,” in 2019 18th European Control
Conference (ECC), pp. 2589–2595, IEEE, 2019.

[49] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear
Programming. SIAM Advances in Design and Control, Society for
Industrial and Applied Mathematics, 2001.

[50] M. Posa, C. Cantu, and R. Tedrake, “A Direct Method for Trajectory
Optimization of Rigid Bodies Through Contact,” The International
Journal of Robotics Research, vol. 33, pp. 69–81, jan 2013.

[51] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems,” in 2016 IEEE
International Conference on Robotics and Automation, vol. 2016-June,
(Stockholm, Sweden), pp. 1366–1373, may 2016.

[52] J. Bracken and J. T. McGill, “Mathematical programs with optimization
problems in the constraints,” Operations Research, vol. 21, no. 1, pp. 37–
44, 1973.

[53] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel
programming for hyperparameter optimization and meta-learning,” in
International Conference on Machine Learning, pp. 1568–1577, PMLR,
2018.

[54] A. Rajeswaran, I. Mordatch, and V. Kumar, “A game theoretic frame-
work for model based reinforcement learning,” in International confer-
ence on machine learning, pp. 7953–7963, PMLR, 2020.

[55] W. Jin, T. D. Murphey, D. Kulić, N. Ezer, and S. Mou, “Learning from
sparse demonstrations,” IEEE Transactions on Robotics, 2022.

[56] S. Pfrommer, M. Halm, and M. Posa, “Contactnets: Learning discon-
tinuous contact dynamics with smooth, implicit representations,” in
Conference on Robot Learning, pp. 2279–2291, PMLR, 2021.

[57] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: from
classical to evolutionary approaches and applications,” IEEE Transac-
tions on Evolutionary Computation, vol. 22, no. 2, pp. 276–295, 2017.

[58] K. Hatz, J. P. Schloder, and H. G. Bock, “Estimating parameters in
optimal control problems,” SIAM Journal on Scientific Computing,
vol. 34, no. 3, pp. A1707–A1728, 2012.

[59] C. Shi, J. Lu, and G. Zhang, “An extended kuhn–tucker approach for
linear bilevel programming,” Applied Mathematics and Computation,
vol. 162, no. 1, pp. 51–63, 2005.

[60] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, (Berkeley, Calif.), pp. 481–492, University of California
Press, 1951.

[61] W. Jin, Z. Wang, Z. Yang, and S. Mou, “Pontryagin differentiable pro-
gramming: An end-to-end learning and control framework,” Advances in
Neural Information Processing Systems, vol. 33, pp. 7979–7992, 2020.

[62] J. Domke, “Generic methods for optimization-based modeling,” in
Artificial Intelligence and Statistics, pp. 318–326, PMLR, 2012.

[63] N. Das, S. Bechtle, T. Davchev, D. Jayaraman, A. Rai, and F. Meier,
“Model-based inverse reinforcement learning from visual demonstra-
tions,” in Conference on Robot Learning, pp. 1930–1942, PMLR, 2021.

[64] S. G. Krantz and H. R. Parks, The implicit function theorem: history,
theory, and applications. Springer Science & Business Media, 2002.

[65] S. Afriat, “Theory of maxima and the method of lagrange,” SIAM
Journal on Applied Mathematics, vol. 20, no. 3, pp. 343–357, 1971.

[66] A. Takayama and T. Akira, Mathematical economics. Cambridge
university press, 1985.

[67] W. Jin, S. Mou, and G. J. Pappas, “Safe pontryagin differentiable
programming,” Advances in Neural Information Processing Systems,
vol. 34, pp. 16034–16050, 2021.

[68] J. G. Riley, Essential microeconomics. Cambridge University Press,
2012.

[69] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[70] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[71] Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J.-K. Huang, and
J. Grizzle, “Feedback control of a cassie bipedal robot: Walking,
standing, and riding a segway,” in 2019 American Control Conference
(ACC), pp. 4559–4566, IEEE, 2019.

[72] L. Sentis and O. Khatib, “Control of free-floating humanoid robots
through task prioritization,” in Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation, pp. 1718–1723, IEEE,
2005.

[73] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in 2013
IEEE International Conference on Robotics and Automation, pp. 3103–
3109, IEEE, 2013.

[74] A. S. Huang, E. Olson, and D. C. Moore, “Lcm: Lightweight commu-
nications and marshalling,” in 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 4057–4062, IEEE, 2010.

[75] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[76] A. Iqbal, S. Veer, and Y. Gu, “Drs-lip: Linear inverted pendulum
model for legged locomotion on dynamic rigid surfaces,” arXiv preprint
arXiv:2202.00151, 2022.

[77] D. E. Orin and A. Goswami, “Centroidal momentum matrix of a hu-
manoid robot: Structure and properties,” in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 653–659, IEEE, 2008.

[78] P. M. Wensing and D. E. Orin, “Improved computation of the humanoid
centroidal dynamics and application for whole-body control,” Interna-
tional Journal of Humanoid Robotics, vol. 13, no. 01, p. 1550039, 2016.

[79] “2022 icra legged robots wokshop presentation by robin deits.”
https://youtu.be/yagQG b hfs. Accessed: 2022-10-24.

[80] G. Pequera, V. Yelós, and C. Biancardi, “Reducing cost of transport in
asymmetrical gaits: lessons from unilateral skipping,” European Journal
of Applied Physiology, vol. 123, no. 3, pp. 623–631, 2023.

[81] H. Dai and R. Tedrake, “Optimizing Robust Limit Cycles for Legged
Locomotion on Unknown Terrain,” in Proceedings of the IEEE Confer-
ence on Decision and Control, (Maui, Hawaii), p. 8, dec 2012.

[82] J. Zhu, N. J. Kong, G. Council, and A. M. Johnson, “Hybrid event shap-
ing to stabilize periodic hybrid orbits,” in 2022 International Conference
on Robotics and Automation (ICRA), pp. 01–07, IEEE, 2022.

[83] P. E. Gill, W. Murray, and M. H. Wright, “Practical optimization (book),”
London and New York, Academic Press, 1981. 415 p, 1981.

[84] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and
C. Fan, “Learning to utilize shaping rewards: A new approach of reward
shaping,” Advances in Neural Information Processing Systems, vol. 33,
pp. 15931–15941, 2020.

[85] G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model predic-
tive control to stabilize diverse quadrupedal gaits for the mit cheetah,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4102–4109, IEEE, 2017.

[86] A. Hereid and A. D. Ames, “Frost: Fast robot optimization and simula-
tion toolkit,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 719–726, IEEE, 2017.

[87] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193–207,
1998.

[88] E. Philip, W. Murray, and M. A. Saunders, “User’s guide for snopt
version 7: Software for large-scale nonlinear programming,” 2015.

	Introduction
	Related Work
	Contributions
	Organization

	Background
	Reduced-order Models of Legged Locomotion
	Models of Cassie
	Trajectory Optimization
	Bilevel Optimization

	Model Optimization
	Definition of Reduced-order Models
	Problem Statement
	Task Evaluation
	Bilevel Optimization Algorithm
	Examples of Model Optimization
	Initialization and parameterization of ROM
	Optimization Examples and Result

	MPC for a Special Class of ROM
	Planning with Reduced-order Models
	Operational Space Controller
	Hardware Setup and Solve Time

	Performance Evaluation and Comparison
	Experiment Motivations
	Motivation for (C1)
	Motivation for (C2)
	Motivation for (C3)

	Experiment Setups
	(C1) Trajectory Optimization
	(C2) Simulation
	(C3) Hardware Experiment

	Turning and Sloped Walking in Simulation
	Straight-line Walking on Hardware
	Optimal Robot Behaviors

	MPC for a General ROM
	Hybrid Nature of the Robot Dynamics
	Planning with ROM and Full-order Impact Dynamics
	Implementation and Experiments

	Discussion
	Model Parameterization
	Trade-off between planning speed and performance
	Linear models (with linear basis functions)
	Alternative basis functions
	Physical Interpretability of ROMs

	Performance Gap Between Open-loop and Closed-loop
	Limitations of Our Framework
	Generality of Our Framework

	Conclusion
	Appendix A: Heuristics in trajectory optimization
	Appendix B: Mirrored Reduced-order Model
	Model definition
	Time derivatives of the embedding function
	m
	m

	References

